Program by Drawing Arrows (a)
Suppose a “BiNode” is defined as follows:
public class BiNode

{

 BiNode(Object obj) - makes node containing obj

 Object getData() - returns node's data object

 void setData(Object obj) - sets node's data to obj

 BiNode getNext() - returns node's successor

 void setNext(BiNode next) - sets the node's successor
 BiNode getPrevios() - returns node's predecessor

 void setPrevious(BiNode next - sets node's predecessor

}

Find three names of pointers that point to the fat, red node:

Find three different ways to set the data field of the fat, red node to “Bert”

Program by Drawing Arrows (b)
Suppose a “Node” is defined as follows:
 public class Node

 {

 Node(Object obj) - makes a node containing obj

 Object getData() - returns the node's data object

 void setData(Object obj) - sets the node's data to obj

 Node getNext() - returns the node's successor

 void setNext(Node next) - sets the node's successor

 }

Consider a list as in the following picture below. Write a method “findPrevious” to return a pointer pointing to the predecessor of “current”, assuming “current” does not point to the first node.

Program by Drawing Arrows 1

Suppose a “BiNode” is defined as follows:
public class BiNode

{

 BiNode(Object obj) - makes node containing obj

 Object getData() - returns node's data object

 void setData(Object obj) - sets node's data to obj

 BiNode getNext() - returns node's successor

 void setNext(BiNode next) - sets the node's successor

 BiNode getPrevios() - returns node's predecessor

 void setPrevious(BiNode next - sets node's predecessor

}

Write the code to insert a new node as in the “before” and “after” picture:

Program by Drawing Arrows 2
Suppose a “BiNode” is defined as follows:
 public class BiNode

 {

 Node(Object obj) - makes a node containing obj

 Object getData() - returns node's data object

 void setData(Object obj) - sets the node's data to obj

 Node getNext() - returns the node's successor

 void setNext(Node next) - sets the node's successor

 Node getPrevios - returns the node's predecessor

 void setPrevious(Node next) - sets the node's predecessor

 }

Write the code to insert a new node as in the “before” and “after” picture:

Program by Drawing Arrows 3
Suppose a “Node” is defined as follows:
 public class Node

 {

 Node(Object obj) - makes a node containing obj

 Object getData() - returns the node's data object

 void setData(Object obj) - sets the node's data to obj

 Node getNext() - returns the node's successor

 void setNext(Node next) - sets the node's successor

 }

A “StrangeList” class is supposed to be similar to a list, but insertion and deletion is supposed to always happen at the beginning of the list. Write the code for an add and a delete method.

 public class StrangeList

 {

 private Node start;

 void add(Object obj) - adds obj as new start

 void delete() - removes node from the start

 }

Program by Drawing Arrows 4
Suppose a “Node” is defined as follows:
 public class Node

 {

 Node(Object obj) - makes a node containing obj

 Object getData() - returns the node's data object

 void setData(Object obj) - sets the node's data to obj

 Node getNext() - returns the node's successor

 void setNext(Node next) - sets the node's successor

 }

A “WeirdList” class is supposed to be similar to a list, but instead of a start and current pointer it has a head and a tail pointer, where head points to the first node of the list, tail points to the last one. Insertion should always insert a new node at the end, deletion should happen at the beginning of the list. Write the code for an add and a delete method.

 public class WeirdList

 {

 private Node head;

 private Node tail;

 void add(Object obj) - adds obj as new start

 void delete() - removes node from the start

 }

