CSAS1111 – Practice Final

This is a practice exam only. The actual final will be close to this exam, but may contain questions that are different from the questions in this practice. The final exam takes place as scheduled on Wed. at 2:45pm in our usual classroom.

1. Please state, in your own words, the meaning of the following terms:
a. class:
An entity to define new types. Contains fields (variables) and methods (functions)

b. method

A method is a function that is part of a class. It is used to "do" things.

c. field

A field is a variable that is part of a class. It is used to "store" data and is available to all methods of the class.

d. linked list
A sequential structure to store data dynamically. Can shrink and grow as needed and contains at least the methods "size", "add", "remove", and "get".
e. string
A structure to store a list of characters. Can be a class or an array of characters, but the class string is more useful.

f. MFC
Microsoft Foundation Classes: a collection of classes created by Microsoft to make programming with a GUI (Graphical User Interface) easier

g. Pointer

A variable that stores a memory address of a specific size.

2. Please provide short answers to the following questions:

a. Is it true that a string is closer to an "array" than to a "list" ?

It depends. There are two definitions of 'string': if you say that 'string' is a null-terminated array of characters, then yes, it's close to an array. If you say that a 'string' is a class then no, the string class is closer to a 'list'.

b. What is the difference between the compiler directives #include <xxx> and #include "xxx" ?

The first one looks for a file in one or more system-specific locations (folders). The second version looks for a file in the current directory only.

c. C++ has two different ways of defining what a "string" is. What are they, which one is 'better', and why?

See question (a). The class version is better.

d. If s is of type string, why do you have to be careful when using cin >> s
Because you only read all input characters up to the first 'whitespace' only
e. Why are linked lists preferred over arrays, and why are arrays preferred over linked lists?

A linked list is preferred over arrays because you do not need to set the size ahead of time. An array is preferred over a linked list because it is usually faster.

f. How do you define a variable to be a pointer?

By putting a 'star' in front of the variable name, as in double *p

g. If p is a pointer to a class and the class contains a public field x, how do you access that field?

You'd say p->x

h. Name and briefly describe at least 4 methods of the string class

size (returns number of characters), at (returns char at given position), find (returns first index of the input string in the string, or large number otherwise), compare (returns -1, 0, or 1 depending on if the input string is less than, equal to, or greater than the string)

i. What is the difference between the string class and the CString class? Name three methods of each class that accomplish similar tasks but are different in name.

CString is Microsoft's (improved) version of the standard C++ string class. CString has methods Length, Find, and [], while string has methods size, find, and at. They work the similarly.

3. The following class contains C++ code that will not compile/execute correctly. Each time you see a mistake (either an error during compilation or while running the code), mark that mistake and briefly explain what the mistake is. You do not need to correct the mistakes:

#include <string>

#include "LinkedList.h" // can store 'double' values, as described in class

using namespace std;

class Book

{

private:

 string author;

public:

 string title

};

int main(void)

{

LinkedList l;

string s = "This test is easy";

l.add(1.0);

l.add(2.0);

Book *b = new Book();

b->author = "Bert Wachsmuth"; // ERROR: author is private

b.title = "C++ for Dummies"; // ERROR: b is a pointer, can't use dot

l.remove(0);

double sum = l.get(0) + l.get(1); // ERROR: after remove there's only one thing left

cout << "The length of string s is: " << size(s) << endl; // ERROR: use s.size() !!

return 0;

}

4. Suppose an class is defined as:

class Dog

{

private:

 string name;

 int legs;

public:

 Dog(string _name, int _legs);

 string getName();

 int numberOfLegs();

};

a. How many fields does the class Dog have?

2

b. How many input values does the constructor require?

2

c. How many methods (not counting the constructor) does the class Dog have

2

d. Create a Dog 'myDog' named 'pluto' with four legs and print the dog's information to the screen.

Dog myDog("Pluto", 4)

cout << myDog.getName() << " has " << myDog.numberOfLegs() << " legs." << endl;

or

Dog *myDog = new Dog("Pluto", 4);

cout << myDog->getName() << " has " << myDog->numberOfLegs() << " legs." << endl;

e. Why do classes such as our Dog class have private fields?

Using private fields you can stop unauthorized access. You can still provide access to a field via a method, but using a method you can control what's happing to the field.

f. Implement the Dog class as described above (you only need to create the "Dog.cpp" file).

Dog::Dog(string _name, int _legs)

{

name = _name;

legs = _legs;

}

string Dog::getName()

{

return name;

}

int Dog::numberOfLegs()

{

return legs;

}

5. Create a class (header file only) Student that can set, store, and retrieve a student's name and social security number. Make sure that the social security number is marked as private to protect it from illegal access. Without having to implement that class, create a program that uses your student class to create 'you', i.e. a "Student" that has your name and your social security number, and print 'your' info to the screen.

class Student

{

private:

string name;

string ss;

public:

Student(string _name, string _ss);

string getName();

string getSoc();

};

int main(void)

{

Student me("Bert Wachsmuth", "123-45-6789");

cout << "My name is: << me.getName() << endl;

cout << "My Soc. is: << me.getSoc() << endl;

return 0;

}

6. If string s1 and string s2 are two string variables, containing some strings, how do you

a. print out the number of characters of s1 to the screen

cout << s1.size();

b. concatenate s1 and s2 and store the result in another string s
string s = s1 + s2;
c. determine whether s2 contains the string "cool"

if (s2.find("cool") < s2.size())

cout << "contains cool";

else

cout << "does not contain cool";

d. display the string s1 in reverse order on the screen

for (int k = s1.size()-1; k >= 0; k--)

cout << s1.at(k);

e. display the lower-case version of the string s2 to the screen (Hint: you may want to create a separate function to return the lower-case version of a single character and use that function to solve this problem).

First we create a function to convert a single character to its lower-case version if necessary:

char toLower(char cc)

{

string upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

string lower = "abcdefghijklmnopqrstuvwxyz;

int pos = upper.find(cc);

if (pos < upper.size());

return lower.at(pos);

else

return cc;

}

string lower = "";

for (int k = 0; k < s2.size(); k++)

lower += toLower(s2.at(k));

cout << "Original: " << s1 << endl;

cout << "Lowercase: " << lower << endl;

7. Create a function that takes as input a string and returns 1 (yes) if the string represents a palindrome, 0 (no) otherwise.

The 'simple' version:

int isPal(string s)

{

string reverse = "";

for (int k = s.size() – 1; k >= 0; k--)

reverse += s.at(k);

if (s.compare(reverse) == 0)

return 1;

else

return 0;

}

The 'semi-smart' version:

int isPal(string s)

{

for (int k = 0; k < s.size(); k++)

{

if (s.at(k) != s.at(s.size()-1-k))

return 0;

}

return 1;

}

8. Use a linked list, as defined in class, to store double values and compute their average as follows: the program should continue asking the user to enter a double and add that double to the list until the user enters the value -1. At that point the program should compute the average of the numbers contained in the linked list and display that average to the screen (make sure you are not adding the 'stop value' -1 to the list).

LinkedList l;

double number = 0.0;

while (number != -1)

{

cout << "enter number: ";

cin >> number;

if (number != -1)

l.add(number);

}

double sum = 0.0;

for (int k = 0; k < l.size(); k++)

sum += l.get(k);

cout << "Average is: " << sum / l.size() << endl;

9. Suppose a LinkedList class is defined via the following header file:

class LinkedList

{

private:

int size;

ListNode *start;

public:

LinkedList(void); // creates an empty list

void add(double); // adds a node containing the double to the list

void remove(int); // removes the node at the given position from the list

void set(int, double); // changes the value at the given position to a new double

double get(int); // returns the double value at the given position

int size(void); // returns number of nodes in list by counting them in a loop

};

Why is the size method (as described) not very efficient? How could you change this class – in your own words, no C++ required – so that the size method becomes more efficient. Make sure to describe all changes necessary.

The size method is inefficient because it needs to count all nodes before delivering the answer. The longer the list is, the longer the size method will take. A better idea is to:

· introduce another integer field numNodes of type int into the class

· modify the constructor to set numNodes = 0 for an empty list

· modify the add method to add a node as well as to increment the numNodes by one

· modify the remove method to remove a node as well as to decrement numNodes by one

· modify the size method to simply return the current value of numNodes

10. Suppose a program using MFC to utilize buttons, edit fields, etc. contains two variables (fields) of type CEdit as follows:

CEdit m_InputText;

CEdit m_OutputText;

Write the code segment to use to retrieve everything stored in m_InputText and put it in the edit box m_OutputText.

the method GetWindowText retrieves text, while SetWindowText sets text of a CEdit variable. Hence:

CString s;

m_InputText.GetWindowText(s);

m_OutputText.SetWindowText(s);

11. A Queue is a class that is similar to the list, but you are only permitted to insert value at the 'top' of the queue, and retrieve values at the bottom of the queue, as well as to inquire about the number of elements in the queue. No other operation is permitted. Create the header file for such a Queue class (you do not need to worry about the implementation, even though it is very similar to the implementation of a LinkedList class). Think carefully about the input/return values of each method.

We need to make sure the 'remove' method that's part of a list is changed because that original method removes an element at the specified position, while for a queue only the 'bottom' element is removed. So, a possible definition of Queue is:

class Queue

{

private:

Node top;

Node bottom;

public:

Queue(void);

int size(void);

void add(double);

double remove(void);

};

Assuming that our queue stores double values. There's no need for any input to the remove method since it always returns the 'bottom' value.

12. Write some code segment that inserts a node immediately after the "current" node, as depicted below:

	
[image: image1.wmf]current

A

C

B

Figure: List before inserting Node with String "X"
	
[image: image2.wmf]current

A

C

X

B

B

Figure: List after inserting Node with String "X"

Node *p = new Node("X");

p->next = current.next;

current->next = p;

current = p;

Extra Credit: Write some code segment for the following situation: Delete the "current" node from a double-linked list, as indicated in the picture below. You do not have to provide a complete method or class, nor do you need to worry about special cases such as deleting the last, first, or only Node in a list. Note: each node has three fields, prior, next, and data, and the constructor of the Node class takes one argument of type char.

	
[image: image3.wmf]current

A

C

X

B

B

s
Figure: List before deleting Node with String "X"
	
[image: image4.wmf]current

A

C

B

Figure: List after deleting Node with String "X"

Node *p = current;

// only if you need to actually delete the node with label "x"

current->prior->next = current->next;

current->next->prior = current->prior;

current = current->prior;

delete p;

// only if you need to actually delete the node with label "x"

Why is it much harder to delete the 'current' node if the list is only a 'single-linked' list such as the one we created in class?

To delete the 'current' node in a single linked node you need to change the "next" pointer of the node preceding the current node. However, that node does not have a name. So before you can delete you need to write some code that ends up with a pointer pointing to the prior node (using a while loop, for example). Then you can delete the 'current' node.

_1070095323.unknown

_1070095324.unknown

_1070095325.unknown

_1070095321.unknown

