C++ Quick Reference

Originally created by Bert Wachsmuth

Modified and updated by Andrew Nuxoll from the University of Portland (09/2007)
C++ is a programming language with grammar rules and legal vocabulary, much like any other foreign language. To use it:

· You create a source code file – a plain text file – containing a “program” written according to the C++ language rules (grammar and vocabulary). Source code is usually saved in a file with a .cpp extension.

· A special program called a compiler checks the source code file for grammar and vocabulary errors. If there are no errors, the compiler creates the “object file”, a file that contains the original instructions in a machine language format. The object file is not “human readable”. The object file is usually named “somename.obj”.

· A second program called the linker combines your object file with possibly other object files to form an “executable” file. The executable file contains instructions in a format that the operating system can understand and execute, i.e. this is a real program you can run.

Note that a compiler is not very smart when translating your source code. Every rule of the C++ language must be followed exactly, the compiler does not “know what you mean” unless you specifically and grammatically correctly write down exactly what you mean.

General Formatting:

· C++ is does distinguish between uppercase and lowercase letters (i.e., it’s case sensitive).

· Statements must end in a semi-colon.

· Curly braces { and } are used to group a set of expressions together

· Comments should be added to your code to clarify it (using either // for short comments or /* … */ for longer comments).

Libraries

C++ provides several libraries of pre-written functions for you that perform frequently needed operations. You access these libraries by placing #include statements at the top of your source code file. The most commonly used libraries are listed below.

	iostream
	provides cin and cout

	cmath
	provides math functions like sin(), sqrt() and log10()

	cstdlib
	provides miscellaneous routines like rand()

	ctime
	provides function for manipulating time

	string
	allows use of the string type

	vector
	allows use of the vector type

	list
	allows use of the list type

Types and Variables

Data (numbers, characters, etc.) that a program needs to “remember” are stored in variables. Every variable must have a type and must be explicitly declared to be of that particular type.
Basic Types:

	char
	single character
	1 byte

	int
	whole number from -232 to 231 – 1
	4 bytes

	double
	decimal number from ±1.8E308 to ±4.9E-324
	8 bytes

	bool
	Boolean (true or false)
	1 byte

Advanced Types:

	string
	one or more characters (text)

	vector
	a resizable array (fast access, slow resize)

	list
	a list of values (slow access, fast resize)

Variable Declaration

To declare a variable, you must give it a name and a type. Syntax:

type varName [= initialValue];

Variable (and function) names should consist of letters, numbers, and the underscore character. They must start with a letter. Spaces are illegal. Note: variable names should always be meaningful.
All declared variable have a value. C++ allocates memory and “labels” it when it encounters a declaration. You may optionally give a variable an initial value when it is declared. Example variable declarations:

double pi = 3.14159;

int seconds;

string myName = “Norbert Weiner”;
All variables must be declared before they can be used. Note: Declare variables close to where they are needed and initialize them immediately.

Scope and Scope Rules

The scope of a variable refers to that part of the program where the variable is accessible. There are two scope rules governing the scope of variables (and symbols):

· The scope of a variable is the codeblock in which it is defined, i.e. a variable is only valid within the block in which it is defined.

· If two variables by the same name are defined in a block, then the closest declaration counts and hides the original variable.

Global variables are variables whose scope is the entire program. That means that they must be defined outside any function, typically at the top of the program. Every function can access and change a global variable. Avoid using global variables without good reason.
Constants

Constants are variables whose value cannot change. They are declared the same as variables except that they must be prefaced by the keyword const and must be given a value when they are declared. Syntax;

const type varName = initialValue;

The initial value cannot change throughout the program. As a rule of thumb, never use unnamed constants (plain values) if there is a meaning attached to them. Instead, define a global constant whose name reflects the meaning and use that name instead of the value.

Arrays

An array is a collection of consecutive elements of the same type that are stored together in memory. Arrays are indexed by an integer starting at 0. For example, you might want to store a list of one thousand measurements in an array like this:

double measurements[1000];

The size of an array must always be a constant integer expression.

To access an array element, use square brackets and an integer expression. For example, to access the 487th entry in the array declared above you would say measurements[486]. (Remember that array elements are indexed starting at zero.) Individual entries (a.k.a. elements) of an array can be assigned values and used for computations just like any other variable.

Structs

A struct is a user-defined type that allows you to keep multiple values together that share a similar purpose. For example, when using a three-dimensional coordinate system, you might want to declare a struct like this:

struct coordinates

{

double x;

double y;

double z;

};

Each struct is declared with the keyword struct and has a user-specified name. Once declared , the struct can be used by name just like any other type.
Operators

Operators are like “mini-functions” that can operate on one or two variables or constant values. When multiple operators are used on the same line, they are performed in a specific order of precedence unless that order is overridden with the parentheses operators.

Fundamental Operators

	()
	alter normal precedence

	=
	assign a new value to a variable

	(type)
	“cast” the succeeding value to the specified type

Mathematical Operators

	+
	addition

	-
	subtraction or negation

	*
	multiplication

	/
	division

	%
	modulus (the remainder of a division)

Beware mixing double with int when performing mathematical operations.
I/O Operators

	>>
	extraction

	<<
	insertion

Shortcut Operators
These operators are not strictly necessary but allow you to write a shorthand for common operations.
	operator
	equivalent expression

	i++
	i = i + 1

	i--
	i = i – 1

	x += k
	x = x + k

	x -= k
	x = x – k

	x *= k
	x = x * k

	x /= k
	x = x / k

	x %= k
	x = x % k

Comparison Operators

	==
	check for equality

	!=
	check for inequality

	>
	greater than

	<
	less than

	>=
	greater than or equal to

	<=
	less than or equal to

Logical Operators

	&&
	logical and

	||
	logical or

	!
	logical not

Tests

Tests (a.k.a. conditions) are a type of expression that is enclosed in standard parenthesis and always evaluate to true or false. Tests are used by conditional expressions and loops (see below). They are evaluated using short circuit evaluation.

Conditional Execution

Simple if

if (test)

codeblock

If with alternative (if-else)

if (test)

codeblock1

else

codeblock2

Nested if (if-else-if)

if (test1)

codeblock1

else if (test2)

codeblock2

else if (test3)

codeblock3

[else

defaultCodeblock]

Example Code with a Conditional

int i = 42;

int myVal = 5;

if (i <= myVal)

{

cout << “My value is too big!”;

myVal -= i;

}

else

{

cout << “Product = “ << i * myVal;

}

Loops

A loop is a language construct to repeat code. All loops have an initializer, a modifier, and a test. While within a loop there are two special commands you can issue:

	break;
	Exit the loop immediately.

	continue;
	Jump to the top of this loop’s codeblock and continue execution from there.

While loops

initializer;

while (test)

codeblock (including modifier)

Do-While loops

initializer;

do

codeblock (including modifier)

while(test);

For loops

for (initializer; test; modifier)

codeblock

Arrays are intimately related to for-loops (see below). Wherever there are arrays, there are for-loops. For example, to print out all values of an array A of size N, one value per line, use

for (int i = 0; i < N; i++)

{

 cout << A[i] << endl;

}

Input/Output

· Output is accomplished using cout, which opens a “stream” to the standard output device (the screen). Data is inserted into the output stream using the << (insertion) operator.

· Input is accomplished using cin, which opens a “stream” from the standard input device (keyboard). Data is retrieved from the stream using the >> (extraction) operator.

Note: Every cin should be prefaced by a cout to prompt the user.

Functions

Functions are used to perform a small, well-defined task with a given input and produce an (optional) output. Functions have two parts, the function header (consisting of return type, the function name, and one or more input parameters) and a function body (that specifies exactly what a function is doing). Functions are also called methods, procedures or subroutines.

Defining Functions

The format for a function definition is as follows:

returnType fName(parameter list)

{

 // function body (specific code)

 return <expression>;

}

where

· returnType is one of the basic types (e.g., int, double) or the special type void which indicates that no value is returned by this function.

· inputList is a comma-separated list of zero or more declared variables whose values must be provided to the function when it is called.

· If a function’s return type is not void, the keyword return must be present and return the type specified in the function header.

· To call a function that returns void, simply type its name followed by an input list of expressions in parenthesis.

Example function:

int multiply(int x, int y, int z)

{

return x * y * z;

}

Functions should be reasonably short and be well-described by their name. Precede each function with a comment block describing it and to use it.
Calling Functions

You call a function by specifying its name followed by a list of values to initialize its input values.

· If you call a function that does not return void, you can assign the returned value to a variable or other expression using the = operator.

· When calling a function you must provide as many input values as are required by the function header, and they must be of the same (or compatible) type.

· When calling a function with no input parameters, use “empty” parenthesis.

Example function call:

int result = multiply(11, 13, 15);

Reference Parameters
Input parameters (variables) to a function can be either value parameters or reference parameters

· Value parameters (the default) receive a copy of the value of the variable used to call the function. The (value) parameter inside the function is unrelated to the variable linked during the function call. Changes to the value parameter inside the function have no effect outside the function.
· Reference parameters point to the same memory location as the variable used to call the function. The (reference) parameter inside the function is just another name for the variable linked during the function call, they refer to the same data. Whenever a reference parameter changes inside the function, the linked variable outside the function also changes.
· If you call a function that expects a value parameter, you can pass either a variable (whose value will be copied) of a compatible type or a number or constant (which is then copied into the variable).

· If you call a function that expects a reference parameter, you can only pass variables (which will be linked) of the same type.

You can recognize reference parameter by the ampersand & symbol between the type and the parameter’s name. Example function with reference parameters:

void add_pi(double &n)

{

const double pi = 3.14159265;

*n += pi;

}

Visual Studio

 Microsoft Visual Studio is an “Integrated Development Environment (IDE)”, i.e. it assists you in creating the source code file, compiling, linking, and executing in one package. There are many other IDE’s that can be used for C++ programming.

To use Visual Studio to create a “text-based” program:

· Start Visual Studio

· Select File | New and select the project template entitled Win32 Console Application
· Provide a Project Name and Location (directory) and create an Empty Project
· Visual Studio will create a .cpp file with the same name as your project. Start entering your source code in this project.

· To compile your code, select Build(Build Solution (or press F7). The details of the success or failure of the compilation will appear in the output pane at the bottom of the application window.

· To run your successfully compiled program select Debug(Run Without Debugging.

It is best to compile often; the compiler is the final authority on C++ grammar and vocabulary and can help you create correct source code.

