Hands-on Introduction to Object-Oriented Programming

Now we will create a complete GUI program, putting our previous lessons to work. Recall our previous class Converter, listed as follows:

public class Converter

{

 public static void main(String args[])

 {

 // Printing out a welcoming message

 System.out.println("Welcome to my Temperature Converter.");

 System.out.println("\nProgram to convert Fahrenheit to Celcius.\n");

 // Defining the temperature value in Fahrenheit

 double temp = 212.0;

 // Applying conversion formula and storing answer in another variable

 double convertedTemp = 5.0 / 9.0 * (temp - 32.0);

 // Printing out the complete answer

 System.out.println(temp + " Fahrenheit = " + convertedTemp + " Celcius.");

 }

}
It works fine but can not handle any user input. When executed it will always convert 212 Fahrenheit to 100 Celsius. We need to be able to get user input, so we download the Console class created by someone else.

Note: You can find the class at

http://pirate.shu.edu/~wachsmut/Teaching/CSAS1111/index.html
Right-click on the class and save it into your current BlueJ project directory. The exit and restart BlueJ to see the class appear on the BlueJ desktop.

The Console class provides the following static methods, according to the documentation:

public static double readDouble()

when the user presses RETURN or ENTER, the method returns a double as entered if possible. If the user enters a non-double number, the program quits.

public static int readInt()

when the user presses RETURN or ENTER, the method returns an int as entered if possible. If the user enters a non-int number, the program quits.

public static String readString()

when the user presses RETURN or ENTER, the method returns a String as entered.

Since all methods are static, we need to access them using the class name and the dot operator, without instantiating a new object. For example:

 double x = Console.readDouble();
would wait for the user to enter a number, retrieve the number entered by the user when he/she hits enter and store it in a double variable named x (a bad variable name -(
Thus, we modify our Converter program as follows, changing it into an actually useful program:

public class Converter

{

 public static void main(String args[])

 {

 // Printing out a welcoming message

 System.out.println("Welcome to my Temperature Converter.");

 System.out.println("\nProgram to convert Fahrenheit to Celcius.\n");

 // Obtaining the temperature value in Fahrenheit from the user after

 // presenting an appropriate prompt:

 System.out.print(“Enter temperature in Fahrenheit: “);

 double temp = Console.readDouble();

 // Applying conversion formula and storing answer in another variable

 double convertedTemp = 5.0 / 9.0 * (temp - 32.0);

 // Printing out the complete answer

 System.out.println(temp + " Fahrenheit = " + convertedTemp + " Celcius.");

 }

}
That is neat, but we want to accomplish more. We want, in particular, to create a program with a Graphic User Interface (GUI) with windows, buttons, etc. While that is in principle difficult, object-oriented programming will help by providing ready-made classes that we can simply use without knowing how they internally work.
Note: Download DoubleField and SimpleWindow classes from

http://pirate.shu.edu/~wachsmut/Teaching/CSAS1111/index.html
Right-click on each class and save it into your current BlueJ project directory. The exit and restart BlueJ to see the classes appear on the BlueJ desktop.

Your BlueJ desktop show now look as follows (after re-arranging the boxes):

[image: image1.png]EXBluel: Assign2
Profect Edit Tooks View Help

New Class.

Compile

Cornpiling... Done.

The new classes we downloaded feature the following (non-static !) methods:

Class DoubleField

This class provides a GUI input field to hold and return a double number. Methods provided are:

public double getDouble()

returns the number entered into the GUI field as a double if possible, or returns 0.0 and shows “ERROR”.

public void setDouble(double x)

puts the double number x into the GUI field, properly formatted.

Class SimpleWindow

This class helps to create a simple window, containing GUI elements in one row. Methods provided are:

public void addLabel(String msg)

Adds a String as label to the current line

public void addField(JTextField field)

Adds an input field such as a DoubleField to the current line

public void addButton(JButton button)

Adds a button to the current line

public void setWindowTitle(String title)

Sets the title displayed in the window’s title bar

In class we used features of BlueJ that allowed us to manually create objects and use methods. We did, in particular, the following:

· Right-click on the SimpleWindow class and select “new SimpleWindow”. As instance name, type program (without quotes, it is not a String).

An object of type SimpleWindow will appear, with reference name program
· Do the same process to create two DoubleField objects, named input and output. In other words, right-click on DoubleField, select new DoubleField and name the instance input. Do it again for the output object.

You now have three objects available, one of type SimpleWindow and two of type DoubleField:

[image: image2.png]EXBluel: Assign2
Project Edit Tools View

New Class.

ji

Compile

Console

DoubleField

SimpleWindow

Creating object

input

In addition, a small window will have appeared on your desktop, representing the SimpleWindow object (you may need to temporarily minimize all other programs to find it, or select it from the Windows Task Bar).

Now we will exercise the methods of the SimpleWindow object called program:
· Right-click on the red SimpleWindow object named program and select “setWindowTitle”. In other words, we are calling program.setWindowTitle. As input parameter, enter, INCLUDING THE QUOTES this time, “My Program”

[image: image3.png]‘ BlueJ: Method Call

void setWindowTitle(String ttle)

program.sstwindowTite (My Program| |v|)

The title of the Window will change to “My Program”.

· Right-click on the red SimpleWindow object named program and select “addLabel”. In other words, we are calling program.addLabel. As input parameter, enter, INCLUDING THE QUOTES again, “Fahrenheit:”

· Right-click on the red SimpleWindow object named program and select “addField”. In other words, we are calling program.addField. As method parameter we must use a field. We have, actually, two DoubleField objects named input and output. With the cursor in the text box, click once on the red DoubleField object named input.

Finally, repeat the process adding another label “Celsius: “, then another field, using the output object as parameter. The window on your desktop should now look as follows:

[image: image4.png]Fahrenheit Celsius:

The program looks good, but does not yet do anything. Still, it shows how to step by step create objects and exercise their methods.

The bad news, however, is that we would have to do these manual steps each time again. But we can also program these steps into a new class (program) so that they get executed automatically.
To do that, we create another class as usual, which we name GUIConverter. It should contain the standard main method, making our class into a program, and the method should simply perform the steps above automatically. Here is the listing of the new class:

public class GUIConverter

{

 public static void main(String args[])

 {

 // First we create a new SimpleWindow object via the new

 // operator and store it as a variable named program

 SimpleWindow program = new SimpleWindow();

 // Similarly, we create two objects of type DoubleField

 DoubleField input = new DoubleField();

 DoubleField output = new DoubleField();

 // Next, we call on the addLabel method of our new object

 program.addLabel("Fahrenheit: ");

 // Then we add the double field created earlier

 program.addField(input);

 // and now another label and the second field:

 program.addLabel("Celsius: ");

 program.addField(output);

 }

}

[image: image5.png]EXBluel: Assign2
Profect Edit Tooks View Help

Compile

New Class.

28 B

Now we can right-click on the GUIConverter class to select the standard main method to execute our program – voila, with one swoop the complete Window appears, as before, except we don’t have to do any “manual” work.

[image: image6.png]=
Fahrenheit: Celsius:

Of course our program does not yet do anything (other than look good) because we have not (yet) added the appropriate methods to the appropriate classes. To finish everything up, we first add a button to our program. But to do that, we must first create a button using the new operator, but we don’t really have a ready-made ‘Button’ class.

Alas, Java comes with literally thousands of pre-manufactured classes, among them a JButton class appropriate for our purpose. But before we can use that class we must import it from an appropriate location. The necessary, new, lines are indicated in bold (including the lines at the top of the program listing)
// We need to import (make available) the JButton class before we can use it

// We use an ‘import’ statement for that:

import javax.swing.JButton;

public class GUIConverter

{

 public static void main(String args[])

 {

 // First we create a new SimpleWindow object via the new

 // operator and store it as a variable named program

 SimpleWindow program = new SimpleWindow();

 // Similarly, we create two objects of type DoubleField

 DoubleField input = new DoubleField();

 DoubleField output = new DoubleField();

 // Now we can create a button with appropriate label to be used later

 JButton goButton = new JButton();

 goButton.setText("Convert");

 // Next, we call on the addLabel method of our new object

 program.addLabel("Fahrenheit: ");

 // Then we add the double field created earlier

 program.addField(input);

 // and now another label and the second field:

 program.addLabel("Celsius: ");

 program.addField(output);

 // Finally we can add the newly created button to our program window

 program.addButton(goButton);

 }

}
After we execute the GUIConverter’s main method, the following window will appear:

[image: image7.png]f— cotstus: [

Convert

BUT, while there now is a button, and I can enter numbers into the fields fine, nothing happens when I click the “Convert” button.

To activate the button we need to implement a method that does the actual conversion. But the method should execute exactly when the button is pressed so we can not execute it manually or programmatically. Instead, we implement a specific method that is automatically called by the operating system whenever the button is pressed. That method must be called actionPerformed and must have the form:
 public void actionPerformed(ActionEvent ae)

 {

 // specific stuff

 }
The actual implementation of our method is pretty easy:
1. retrieve the value in the DoubleField input
2. apply the conversion formula

3. put the converted value into the DoubleField ouput
That is simple, because the DoubleField class provides just the right method setDouble and getDouble. Thus, we add the following method to our GUIConverter:

 public void actionPerformed(ActionEvent ae)

 {

 double temp = input.getDouble();

 double convertedTemp = 5.0 / 9.0 * (temp - 32.0);

 output.setDouble(convertedTemp);

 }

Note the similarity to our earlier and much simpler Converter program!

However, that does not compile because the ActionEvent class is unknown and the method actionPerformed does not know anything about the input and output objects defined in another method!
To fix the problem, we first import the appropriate Java class and second we move the definition of the input and output objects out of the main method and to the top of the class (we also mark them as static for technical reasons explained later). Our new, almost final, code is as follows:

import javax.swing.JButton;

import java.awt.event.ActionEvent;

public class GUIConverter

{

 // We now create two objects of type DoubleField at the top of our class
 // as FIELDS for our class (remember, classes have fields and methods

 static DoubleField input = new DoubleField();

 static DoubleField output = new DoubleField();

 public void actionPerformed(ActionEvent ae)

 {

 double temp = input.getDouble();

 double convertedTemp = 5.0 / 9.0 * (temp - 32.0);

 output.setDouble(convertedTemp);

 }

 public static void main(String args[])

 {

 // First we create a new SimpleWindow object via the new

 // operator and store it as a variable named program

 SimpleWindow program = new SimpleWindow();

 // Now we can create a button with appropriate label to be used later

 JButton goButton = new JButton();

 goButton.setText("Convert");

 // Next, we call on the addLabel method of our new object

 program.addLabel("Fahrenheit: ");

 // Then we add the double field created earlier

 program.addField(input);

 // and now another label and the second field:

 program.addLabel("Celsius: ");

 program.addField(output);

 // Finally we can add the newly created button to our program window

 program.addButton(goButton);

 }

}

The program compiles but when we execute it still nothing happens. But two simple changes will fix that:
· Our class GUIConverter should extend SimpleWindow, i.e. be a particular SimpleWindow
· In the main method we need to now create an object of type GUIConverter, no longer of type SimpleWindow
The two simple but subtle – and final – changes to the code are highlighted in bold below:

import javax.swing.JButton;

import java.awt.event.ActionEvent;

// We add the keywords extends to our class definition as follows:

public class GUIConverter extends SimpleWindow

{

 // Similarly, we create two objects of type DoubleField

 static DoubleField input = new DoubleField();

 static DoubleField output = new DoubleField();

 public void actionPerformed(ActionEvent ae)

 {

 double temp = input.getDouble();

 double convertedTemp = 5.0 / 9.0 * (temp - 32.0);

 output.setDouble(convertedTemp);

 }

 public static void main(String args[])

 {

 // We now create a new GUIConverter object via the new

 // operator and store it as a variable named program

 GUIConverter program = new GUIConverter ();

 // Now we can create a button with appropriate label to be used later

 JButton goButton = new JButton();

 goButton.setText("Convert");

 // Next, we call on the addLabel method of our new object

 program.addLabel("Fahrenheit: ");

 // Then we add the double field created earlier

 program.addField(input);

 // and now another label and the second field:

 program.addLabel("Celsius: ");

 program.addField(output);

 // Finally we can add the newly created button to our program window

 program.addButton(goButton);

 }

}

Now when we execute our final program (by right-clicking and selecting main), our program looks as before but now it actually works! Finally!

[image: image8.png]Fahrenheit: [212.0 celsius: [100.0

