Simple Script

#!/bin/sh

Bert. G. Wachsmut, Feb. 2008
This is a simple script, created with a standard text editor such as 'pico'. After you save the file to, say,
"simple_script" you can execute it in any of these ways:

Option 1: Use the "sh" shell directly with your program as parameter. This is useful to execute a script once or twice,
or while testing a script (remember that the 'up-arrow' recalls the last command(s) used):
prompt:> sh simple_script

Option 2: First change the mode of the file to be executable, then you can execute it by prefacing it with the path of
the current directory.

prompt:> chmod u+x simple_script (only execute this once)

prompt:> ./simple_script (now works every time)

Option 3: If your script is 'perfect' and 'useful', move it to your private 'bin' directory. Then you can execute it
without prefix:

prompt:> mkdir ~/bin (only execute this once)

prompt:> mv simple_script ~/bin (only execute this once)

prompt:> chmod a+x simple_script (only execute this once)

prompt:> simple_script (now works every time)

Option 4: Modify your .bashrc file to append a period (.) to your default path. Then you can execute any program
marked as executable in the current directory. This option is NOT recommended.

Option 5: If you write a script useful for everyone, move it to /usr/local/bin

Here is the actual script, everything above are just commends and instructions:

prompt:> echo "Today is `date`, $USER, and there are `who | grep -c $` users total."

Here is what the script does:

#

* This script prints out a string onto "standard out" because of 'echo'

* The date in reverse single quotes means that the 'date' command executes and the output is inserted in this
 position.

* The '$USER' takes the value of the variable USER and inserts it in this position

* the command "who | grep -c $" runs the 'who' command, pipes the output through the 'grep' command, which
 # searches for everyone (the $ wildcard) but only gives

the total count (becuase of the -c option) and that number is inserted there

A slighly better version uses options for 'who' directly to give a more accurate count (without counting people twice):

echo -e "Today is `date`, $USER. Current users are:\n\t`who --count` users total."

Here we use the --count option to get 'who' to give us a count, and the -e option for 'echo' to enable control sequences
such as \n (new line) and \t (tab).

Script with Parameters

#!/bin/sh

Bert. G. Wachsmut, Feb. 2008
Scripts can have 'parameters' that are given on the input line. Inside a script you can use special variable to access the
parameters:

#

$1, $2, ..., to $9 stand for the first, second, ... parameter

$* stands for all parameters

$# stands for the number of input parameters

#

For example:

echo This script uses parameters

echo First parameter is: $1

echo Second parameter is: $2

echo Number of parameters: $#

echo List of all parameters: $*

Try running this script in each of these ways to clarify how input parameters work.
'sh script_with_parameters'

'sh script_with_parameters Bert Wachsmuth'

'sh script_with_parameters "Bert Wachsmuth"'

Script to Backup a Single File
#!/bin/sh

Bert. G. Wachsmut, Feb. 2008
#

We want to create a script to backup a file (note that you only need ONE of the versions below, so when you
type this up, remove the previous version(s) before typing up the 'next one.
Version 1: The straight-forward approach:

cp test.txt test.backup

This will only backup the file name 'test.txt', so it is too inflexible as a script.

Version 2: We are using variables to make the script more flexible, with comments for the uninitiated user:

File to backup:

FILE_ORIGINAL=test.txt

Name of backupfile

FILE_BACKUP=test.backup

Command, do not modify

cp $FILE_ORIGINAL $FILE_BACKUP

Version 3: Now we are using parameters so that I can backup any file I like:

cp $1 $1.backup

This will copy the input file to another file with a .backup extension and works fine, but I should check if the input
file exists to avoid an error message

Version 4: Using parameters and file checks

if test -f $1

then

cp $1 $1.backup

else

echo "The input file [$1] does not exist"

fi

That works, but if there's no parameter it gives another error message.

Version 5: Parameters, file checks, and parameter checks

case $# in

 0)

echo "You must provide the name of the file to backup."

 ;;

 *)

if test -f $1

then

cp $1 $1.backup

else

echo "The input file [$1] does not exist"

fi

esac

This is satisfactory, but I want to be prompted if the backup file already exists (I could use cp -i). Or better yet, I
create a unique backup file using either the date or the process id, or even better, both, as part of the backup file name

Version 6: Parameters, file check, parameter checks, unique file name

EXT=".`date +"%m-%d-%y"`-$$.backup"

case $# in

 0)

echo "You must provide the name of the file to backup."

 ;;

 *)

if test -f $1

then

cp -i $1 1EXT

else

echo "The input file [$1] does not exist"

fi

esac

Final version: as above but with custom feed-back, and file names sorted by calendar automatically
EXT=".`date +"%y-%m-%d"`-$$.backup"

case $# in

 0)

echo "You must provide the name of the file to backup."

 ;;

 *)

if test -f $1

then

if cp -i $1 1EXT > /dev/null

then

echo "File [$1] successfully copied to [1EXT]"

else

echo "There was an error copying [$1] to [$1$EXT]"

fi

else

echo "The input file [$1] does not exist"

fi

esac
More Information:

Books:

· Mastering UNIX Shell Scripting by Randal K. Michael
· Unix Shells by Example by Ellie Quigley
I have not actually checked these books, they are only suggestions. To be honest, I would rather check out online information such as the following:

Online

· http://www.injunea.demon.co.uk/pages/
(includes book in MS Word and HTML format)
· http://rhols66.adsl.netsonic.fi/era/unix/shell.html
(an HTMLized version of Steve Bourne's original shell tutorial)
· http://www.shelldorado.com/
(Heiner's UNIX shell scripting resources with many(!) additional links to tutorials etc.)
· http://www.freeos.com/guides/lsst/
(online book, looks compact and pretty nice, by Vivek G. Gite)
And many, many more resources (do a Google search for "Unix Shell Script Introduction")
