About Encryption/Decryption

To encrypt/decrypt data with very reasonable security, many Unix and most Linux system provide a tool called “gpg”, the main program for the “GNU Privacy Guard” system. It provides a wealth of options, and for details you should check out http://www.gnupg.org/ (GnuPG is a complete and free replacement for PGP. Because it does not use the patented IDEA algorithm, it can be used without any restrictions)

Before you can encrypt/decrypt files you need to general a “key pair”, consisting of one public and one private “key”. From www.gnupg.org: “Classic methods for encryption only use one key for encryption. The sender encrypts the message with this key. To be able to decrypt this the receiver needs to have this very same key. This key must have been given to the receiver in a way, that others won't have had the opportunity to obtain this key. If somebody else does have the key, this method of encryption is useless. The use of so-called Public Keys can solve this problem. Public Keys is a concept where two keys are involved. One key is a Public Key that can be spread through all sorts of media and may be obtained by anyone. The other key is the Private Key. This key is secret and cannot be spread. This key is only available to the owner. When the system is well implemented the secret key cannot be derived from the public key. Now the sender will crypt the message with the public key belonging to the receiver. Then decryption will be done with the secret key of the receiver. Crucial in this concept is that the secret key remains a secret and should not be given away or become available to anyone else but the owner of this key. YOU CANNOT SEND THIS KEY OVER THE INTERNET. Also it is very unwise to use GnuPG over telnet (you might consider never to use telnet based on the high security risks).”

Step 1: Generate your own public/private key combination

Execute: gpg --gen-key and follow the instructions (if it fails the first time, repeat the process)

You should now export and publish your public key but keep your private key very private (see web site). In our case we will consider “local encryption” only, where you want to encrypt and decrypt your own files on the local system, so we can skip this step.

Step 2: Encrypt a file

Execute: gpg --encrypt FILENAME and follow the instructions

The program will now generate the encypted file FILENAME.gpg and you should delete the original file. Your public key has become part of the encrypted file.

Step 3: To decrypt a file

Execute: gpg --decrypt FILENAME.gpg and follow the instructions

For this to work you must have access to your private key and you must remember your pass-phrase. Your public key is retrieved from the encrypted file and matched against your private key and password. If everything checks out, the original file is reconstructed correctly. Note that the file is decrypted to “standard output” so you should redirect the output to a file.

Your Job

Construct a script to handle local encryption/decryption in an easy way. For example, the script could use 2 input parameters, a “command” and a “file”. The command could by “encrypt” or “decrypt”:

· Encrypt should cause the “file” to be encrypted and, if successful, the original should be removed. You should check if file(s) exists, else print an appropriate error.
· Decrypt should cause the “file” to be decrypted and, if successful, the encrypted file should be removed and the original file be recreated. Again, check for existing files.
