Behavior-based Programming
Lejos supports behavior-based robots via a subsumption framework. Each behavior needs to be defined in a separate class, which contains at least three methods:

· action – to define what to do

· suppress – to define how to stop doing it

· takeControl – to define when to do it

Finally, each behavior is added to an array (vector) in order of priority, which is used as input to an arbitrator. The arbitrator is started and then calls the various behaviors to check which one gets triggered.

Here is an example: First, define a new class and name it BehaviorMove. This class will define a low-level behavior to move around without any particular purpose. Since this going to be a Behavior (note the keywords implements Behavior in the class definition below) we must define the action, suppress and takeControl methods, even if they do not (yet) do anything. Add the following code to the class:

import lejos.subsumption.*;
public class BehaviorMove implements Behavior
{

// what to do

public void action()

{

// move around (details later)

}

// how to stop doing it

public void suppress()

{
}

// when to start doing it

public boolean takeControl()

{

return true;

}
}
Note that this class does not contain a standard main method! Next, define a second new class named, for example, BehaviorRobot, containing the following code:

import lejos.nxt.*;
import lejos.subsumption.*;
public class BehaviorRobot
{

public static void main(String args[])

{
 // create each behavior

Behavior move = new BehaviorMove();
 // define an array (vector) of existing behaviors, sorted by priority

Behavior behaviors[] = { move };
 // add the behavior vector to a new arbitrator and start arbitration

Arbitrator arbitrator = new Arbitrator(behaviors);

arbitrator.start();

}

}
To upload the complete program consisting of this class and all behavior classes, you just need to upload the class with the main method, all supporting behavior classes are uploaded automatically with it if necessary. Only the class with the main method will show up on the LCD screen of your NXT, but the other classes do take up memory.

Of course nothing would happen when you run the program, since the action method of the BehaviorMove class does not (yet) do anything.
Next, we add methods to the BehaviorRobot program (the one with the main method) to potentially move and turn the robot (but we do not actually call on those methods directly). We can use, for example, our previously developed “turn” function as a start. Recall:

public static void turn(int angle) throws Exception

{

int numDegrees = (int)Math.abs(Math.round(angle*CONVERT_TURN));

// set motors up for counter-clockwise rotation

Motor forwardMotor = leftMotor;

Motor backwardMotor = rightMotor;

// if angle is negative, switch motors for clockwise rotation

if (angle < 0)

{

forwardMotor = rightMotor;

backwardMotor = leftMotor;

}

forwardMotor.resetTachoCount();

backwardMotor.resetTachoCount();

forwardMotor.forward();

backwardMotor.backward();

while ((forwardMotor.getTachoCount() < numDegrees) ||

 (backwardMotor.getTachoCount() > -numDegrees))
{

if (forwardMotor.getTachoCount() > numDegrees)

forwardMotor.stop();

if (backwardMotor.getTachoCount() < -numDegrees)

backwardMotor.stop();

}

forwardMotor.stop();

backwardMotor.stop();

}
But we need to modify the method in two respects:
· The method currently includes a loop that executes until the robot has turned the desired angle. However, we must be prepared to stop turning at any time, since another higher-priority behavior might want to take over at any time. We therefore add a boolean variable “stop” as a state variable and execute the loop until we have turned the required angle or until stop is true. We also add a method to set stop to true so that behaviors can interrupt moving by calling this stop method.
· While the loop executes, it completely occupies the NXT processor and no processing cycles will be available for the arbitrator to do its job. We therefore add calls to Thread.yield() and Thread.sleep(40) to pause the loop in order to free up the processor for other activities. This will make the method multi-tasking friendly.
Here is the new, modified method – note that the boolean state variable stop needs to also be added to the class (we’ll show the complete code later):

public static void turn(int angle) throws Exception

{

stop = false;

int numDegrees = (int)Math.abs(Math.round(angle*CONVERT_TURN));

// set motors up for counter-clockwise rotation

Motor forwardMotor = leftMotor;

Motor backwardMotor = rightMotor;

// if angle is negative, switch motors for clockwise rotation

if (angle < 0)

{

forwardMotor = rightMotor;

backwardMotor = leftMotor;

}

forwardMotor.resetTachoCount();

backwardMotor.resetTachoCount();

forwardMotor.forward();

backwardMotor.backward();

while (((forwardMotor.getTachoCount() < numDegrees) ||

 (backwardMotor.getTachoCount() > -numDegrees)) &&

 (!stop))

{

if (forwardMotor.getTachoCount() > numDegrees)

forwardMotor.stop();

if (backwardMotor.getTachoCount() < -numDegrees)

backwardMotor.stop();

Thread.yield();

Thread.sleep(50);

}

backwardMotor.stop();

}
In a similar way we add a “travel” function to the program to move our robot in a straight line. We again use our previously developed travel function, enhanced in three ways:

· We modify the code to allow positive as well as negative distances as input, where negative distances mean to move backwards.
· We query the newly added stop variable to allow other behaviors to interrupt moving any time.

· We add calls to Thread.sleep and Thread.yield to make the method multi-task friendly.

Here is the complete BehaviorRobot code, including the travel method as well as our new stop methods and a utility function to set the speed of movement. All necessary constants are listed as well, but you might need to adjust them to match your robot design.

import lejos.nxt.*;
import lejos.subsumption.*;
public class BehaviorRobot
{

final static float CONVERT_DIST = 20.8f;

final static float CONVERT_TURN = 1.93f;

final static int SPEED = 300;

static Motor leftMotor = Motor.C;

static Motor rightMotor = Motor.A;

static boolean stop = false;

public static void main(String args[])

{

setSpeed(SPEED);
 // create each behavior

Behavior move = new BehaviorMove();
 // define an array (vector) of existing behaviors, sorted by priority

Behavior behaviors[] = { move };
 // add the behavior vector to a new arbitrator and start arbitration

Arbitrator arbitrator = new Arbitrator(behaviors);

arbitrator.start();
}

/*

 * Sets the new speed of both motors to the input value

 */

public static void setSpeed(int speed)

{

leftMotor.setSpeed(speed);

rightMotor.setSpeed(speed);

}
 /*

 * Stops all turning and traveling immediately

 */

public static void stop()

{

stop = true;

}

/*

 * Turns robot clockwise or counter-clockwise by the specified degrees.

 */

public static void turn(int angle) throws Exception

{

stop = false;

int numDegrees = (int)Math.abs(Math.round(angle*CONVERT_TURN));

// set motors up for counter-clockwise rotation

Motor forwardMotor = leftMotor;

Motor backwardMotor = rightMotor;

// if angle is negative, switch motors for clockwise rotation

if (angle < 0)

{

forwardMotor = rightMotor;

backwardMotor = leftMotor;

}

forwardMotor.resetTachoCount();

backwardMotor.resetTachoCount();

forwardMotor.forward();

backwardMotor.backward();

while (((forwardMotor.getTachoCount() < numDegrees) ||

 (backwardMotor.getTachoCount() > -numDegrees)) &&

 (!stop))

{

if (forwardMotor.getTachoCount() > numDegrees)

forwardMotor.stop();

if (backwardMotor.getTachoCount() < -numDegrees)

backwardMotor.stop();

Thread.yield();

Thread.sleep(50);

}

forwardMotor.stop();

backwardMotor.stop();

}

/*

 * Drives robot forward or backwards by specified distance.

 */

public static void travel(int distance) throws Exception

{

stop = false;

int numDegrees = (int)Math.abs(Math.round(distance*CONVERT_DIST));

 leftMotor.resetTachoCount();

 rightMotor.resetTachoCount();

 if (distance > 0)

 {

leftMotor.forward();

rightMotor.forward();

 }

 else

 {

leftMotor.backward();

rightMotor.backward();

 }

 while (((Math.abs(leftMotor.getTachoCount()) < numDegrees) ||

(Math.abs(rightMotor.getTachoCount()) < numDegrees)) &&

(!stop))

 {

Thread.yield();

Thread.sleep(50);

 }

leftMotor.stop();

rightMotor.stop();

}
}
Now that we have these possibilities, we can adjust the BehaviorMove class accordingly:
import lejos.subsumption.*;
public class BehaviorMove implements Behavior
{

// state variables for this behavior

boolean stop = false;

// what to do

public void action()

{

stop = false;

try

{

while (!stop)

{

BehaviorRobot.travel(40);

BehaviorRobot.turn(90);

}

}

catch(Exception ex)

{

}

}

// how to stop doing it

public void suppress()

{

stop = true;

BehaviorRobot.stop();

}

// when to start doing it

public boolean takeControl()

{

return true;

}

}
Note that we added a stop variable to this class as well so that the suppress method can interrupt the loop in the action method if necessary. Also, we had to add what’s called a try-catch block to the action method for technical reasons to deal with possible errors in the turn and travel methods due to the multi-tasking friendly design of those methods. As a rule, any time you call travel or turn you need to embed that in such a try-catch block.
With the ground work now ready it is very easy to add additional behaviors:

· Define any state variables for sensors if necessary in the BehaviorRobot class

· Create a new class that implements Behavior to define the new behavior

· Add the new behavior to the array in the main method in order of priority

For example, let’s add an “avoid” behavior to our robot that avoids obstacles by moving backwards and turning around.
First, add the distance sensor to BehaviorRobot, as usual:

import lejos.nxt.*;
import lejos.subsumption.*;
public class BehaviorRobot
{

// constants as before

static Motor leftMotor = Motor.C;

static Motor rightMotor = Motor.A;

// new state variable

static UltrasonicSensor sonar = new UltrasonicSensor(SensorPort.S1);

// rest as usual

}

Next, define the new behavior in a separate new class:

import lejos.subsumption.*;
public class BehaviorAvoid implements Behavior
{

// what to do

public void action()

{

try

{

BehaviorRobot.travel(-20);

BehaviorRobot.turn(-120);

}

catch(Exception ex)

{

}

}

// how to stop doing it

public void suppress()

{

BehaviorRobot.stop();

}

// when to start doing it

public boolean takeControl()

{

return (BehaviorRobot.sonar.getDistance() < 20);

}

}
This behavior will get triggered if the distance sensor records objects closer than 20 cm (as defined in takeControl).

Finally, we’ll add this new behavior to the arbitrator at a higher priority than the default move-around behavior. We simply modify the main method of BehaviorRobot as follows (modified code in italics):

public static void main(String args[])

{

setSpeed(SPEED);

Behavior move = new BehaviorMove();

Behavior avoid = new BehaviorAvoid();

Behavior behaviors[] = { move, avoid };

Arbitrator arbitrator = new Arbitrator(behaviors);

arbitrator.start();

}
You hopefully feel comfortable now to add your own behaviors to your behavior-driven robot. Enjoy!
